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ABSTRACT . I —

Consider the p-dimensional unit cube [0,l]p, p>1.

Partition [0,1]P into n regions, vo+ /Ry SUCh that the

-1

ern

volume A(R. )is of order n ~,j=1,...,n. Select and fix

a point in each of these regions so that we have xf?l..,xgv

Suppose that associated with the j-th predictor vector x(n)

(n)
j

there is an observable variable Y. ', j = 1,...,n satisfying

(n)) {n)
(el o)

identically distributed random variables with Eén) = 0 and

Var él) 02 < », This paper proposes
-Pen
Br¥i,,

where k(u) is a known p-dimensional bounded density and

the multiple regression model an) = g(x

an unknown function defined on [0,1]p and

, where g is

} are independent

gn(g_() k[(x-u)/a ]du as an estimator of g(x) ’

{an} is a sequence of reals converging to 0 as n + =,

Weak and strong consistency of gn(x) and rates of convergence

are obtained. Asymptotic normality of the estimator is established.

2 (n) (n))) as a consistent

Also proposed is o = n-lig=l(Yj -g, (x

estimate of 02.

n

............




(38}

1. INTRODUCTION.

" A statistical problem which finds a wide range of appli-

- " cations is the estimation of a regression function,g(x) = E(Y|x),

where Y is a dependent variable and X is a pxl vector ofAregressors
(p >21). If g(§) is specified except for a set of parameters,
then a typical estimate for g(¥) would be the least squares
estimate which is, of course, the maximum likelihood estimate if
the errors are normally distributed and g(¥) is linear. But if
g(f) is completely unknown, it would be desirable to estimate g(f)
by a method that would provide good properties of the estimate.
When x is univariate (i.e., p=1), such a method is proposed and
studied by Priestley and Chao (1972). Their estimate has been
further studied by Benedetti (1977), Cheng and Lin (1981a,b),

and Schuster and Yakowitz (1979), among others. The Priestley-
Chao estimate is nonparametric in the sense that the conditional
distribution of Y given x is not specified. This estimate

resembles the kernel estimate of a probability density function

investigated by Rosenblatt (1956), Parzen (1962), and many others. .
?i “~1n the—pgeséa;:;;;éstig§t§en, an estimate/;gw;?;;\is proposed
when there are at least two independent regressors. This is not

a direct generalization of the Priestley-Chao estimate. Also
presented is a consistent estimate for the error variance. With

the aid of the variance estimate, an asymptotic confidence interval

o

for g{x)-can be constructed.

*
The multiple regression function model we discuss here may

be presented as follows: Let {0,1]p denote the p-dimensional
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unit cube (p>l). Divide the unit cube into n mutually disjoint

and totally exhaustive regions R rese Ry 0 such that the volume
’

l,n
of ls'n converges to 0 as n -+ », From each of these regions select

ard fix a poi.nt so that we have x{?!..,:&i?) where x!"t R s jJ=1,...n,
< =3 N

(n) )
Suppose that Y,,... ,!é:) is a random sample obtained fram the following

models

(n) ( .
Yj = g(f;} + e;nz J = 1’...’n' ‘101)

(n) (n)

where €yr.-.,e ~ are independent identically distributed

(iid) random variables such that Eegﬂ= 0 and Varé;)= 02<“'

and g(-) is an unknown p-dimensional function defined on

[0,1]P. rThe problem is to estimate g(x). Let A(RjﬂJ denote the
,n'j =1,...,n. A nonparametric

volume of the j-th region R,

J
estimate of g(§) is defined by:
(x) = a_PJ0 Yor.  k[{x-u)/a_Jdu (1.2)
In®) = a"Lja ¥y, Kbeu/alan .

where k(g) is a known p-dimensional probability density

function satisfying the following conditions:

(1) supk(u) < «», (ii) 1lim ||u]]|k(uw) = 0,

a7 Haf ] "
where || ¢+ || is the Euclidean distance function.

If an approximate confidence interval for g(f) is
desired, then one would need a consistent estimate of 02.

One such estimate may be given by:

2 _ _-l¢n n) _ (n),,2
of =01 (0 - g M (1.3)

The organization of this paper is as follows: In Section

2, weak and strong consistency and their rates, and asymptotic
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normality of gn(f) are established. The conditions required
to prove the consistency of gn(f) 'are much weaker than those of .
Priestley and Chao (1972), Schuster and Yakowitz (1979), and
Benedetti (1977) ;and the methods of proof are different. 1In
Section 3, the (weak) consistency of og is established. Thus
an approximate normal confidence interval for g(f) can be
established. Finaily in Section 4 we discuss the optimal choice
of k(u).

In the rest of this paper we employ the following notations:
-ji>, !gl_>, and _D, to mean, respectively, convergence in
probability, with probability one, and in distribution. Unless
otherwise specified, hereafter, all integral signs will mean

multiple integration. For easy of exposition, we shall write
n Sn?'_fgp)
l, ..., n.in the remainder of the paper.

Rj for Rj, and suppress all superscripts for Y
e, 5 -

, and

3

2. PROPERTIES OF gn(§).

In this section some basic properties of gn(§) are
established. Precisely we show that gn(g) is asymptotically
.unbiased (Theorem 1), weakly consistent (Theorem 2), strongly
consistent (Theorem 3), and asymptotically normal (Theorem 6).
We also demonstrate that the rate of weak consistency is of the

order 0(n~?) for some p > 0.

THEOREM 1. If max 8(R;) = 0(n"l), if nal + = as n ==,
1<j<n

and if g(x) is continuous on [0,1]P, then for each x ¢ [0,117,

Eg,(x) + g(x) as n =+ = (2.1)




MM

PROOF. Note that

. - Ban(x) = 215 908y) fp KL (x-w /3, ] du,

k- . where du = du ... dup. Thus,

|Bg, (x)-g(x) | < 15175 l9(xy)-g(@)1a Pkl(x-u)/a ]du]

: j

+|I° lfR [g(u)-g(x)]a Px[(x-u)/a_ ldu
.:- j= j - - :
; = Iln+ IZn' say. (2.2)

But since g(x) is uniformly continuous on [0,1]p and

max A(R.) = O(n-l) then for sufficiently large n, I,, can be

o 1<j<n

‘f made arbitrary small. Note also that as n + o
= I, = |/f [g(u)-g(x)]a Pk [(x-u)/a_ldu| + 0, (2.3)
j% by Lemma 2.1 of Cacoullos (1966) provided naﬁ + o, as
n <+ o', ll
% THEOREM 2. If the conditions of Theorem 1 hold then for all
x ¢ [0,1)P,
P

- : g,(X) —> g(x) as n » =, (2.4)
- N ~ -~ —
-:\
ot
;3 PROOF. 1In light of Theorem 1 we need only to show that for all

X € {o,11P, gn(f) - Egn(g)—£-> 0 as n + », To this end we use

4 the following result of Pruitt (1966 , Theorem 1l): Let {Uj} be

[ a sequence of iid random variables such that EUl = 0, and let
3 - tn

;3 2 2j=1cnjuj where {an} is an array of constants such

L that 1lim an = 0 for every integer j. Then 32 L5 0 if

= n-+o

B Bt B I P
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and only if max C_. - 0 as n + =, Now set
l<jzn

= - = -.!> - {
Uj Yj EYj and an a, IRjk[(§ 9)/an]dg. (2.5)

Then there exists a positive constant C not depending on n such

that

-p P "].
max C . < a max A(R,)supk(v) < C(na}) + 0, as n + =,
l1<j<n ™I l<j<n v T n

Thus the result follows. I

THEOREM 3. Assume that the conditions of Theorem 1 are ig.force

and that a_ > cn™(1=8)/P £or some c > 0 and 8 ¢ (0,1). 1f

E IEE].l ]f+:l//8 < =, then .ft)]: al]-l- X € [()I l'll)’

g, (x) SRL_, g(x), as n + = (2.6)

PROOF. We use another result of Pruit (1966, Theorem 2), in

which it is stated that if max C_. O(n-B) for some 0 < B < 1

1<j<n

and if E|U1|1+1/8 < =, then 2 ¥Pl ., 9, as n + =, where Coar Usv

] 3
and z, are as defined in the proof of our Theorem 2. Thus

max C_. < C/(nag) = 0(n"®) if we choose a_ > cn” (1-8)/P

1<jzn

. and
the desire conclusion follows. |
It is possible to obtain the rates of convergence in weak

consistency (Theorem 2). First we state and prove the following

lemma.

LEMMA 1. Suppose that there exist positive constants C, and C

1 2

such that, for all n > 1,

ot T et T e . et 5
Sa PO TR R S ) P W Sl R T GE PR




a max(Cln-a/p, czn"l‘ﬁ)/P) - (2.7)

n

v

for some 0 < o < 8 < 1. If G(u) = P(|Y, - EY,| > u), and if

1
t
uG(u) <M< = for some t > 1 + a/B, then for every ¢ > 0,

P(lg,(x) - Eg (x)| > ¢) =0(n™®), (2.8)

where p = B(t-1) -~ a > O.

PROOF. We make use of Theorem 1 of Franck and Hanson (1966) .
Recall the definitions of '{an}, {Uj} and 2 from the proof

of Theorem 2. Franck and Hanson (1966) show that if for same constants

0 <a < h . <C.n® max C_. < C,n ?, and if for some
a < B, j=1"nj - "3 ! 1<3j<n nj — "4 '
t>1, Zn_l EJ < Csn-p for some p > 0 then it follows that
P[lznlle] = 0(n"P). 1Identifying C ny = @ pf k[(x-u)/a_ ]ldu and
. J

Uj = Yj_- EYj, j=1l,...,n. we see that if a, 3_C2n -(1-B)/p
then max C j < C‘in_B and if a > Clnfa/p, then

n = p - * p

Zj=1cn3 an {0 1]pk[(x u)/a_Jdu < C*a * < C3n .

n t t -le¢n
Finally, 1521%; < 1<j<n N3 L5=1%n;
< csn-s(t-1)+a < Csn-p,

where p= B(t-1) - a.|]

THEOREM 4. Assume that the conditons of Lemma 1 are in

force. Then for any € > 0 and all x ¢ [o,llp,

Pllg,(x) - g(x)] > €] = 0(n""), (2.9)

...................................
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PROOF. Since Egn(f) -~ g(x) 0 as n+ = for all x ¢ (0,1)P
we have for n sufficiently large that |Eg (x) - g(x)] < e/2
and hence

Pllgn(f) - g(§)| > €]l < Pllg,(x) - Egn(§)| > €/2] = o(n”"),

(2.10)

by Lemma 1.||

" We can also establish rates of convergence in the mean
square consistency, i.e., the rate of E[gn(§) - 9(§)]2.

To this end we establish the following lemma

LEMMA 2. Suppose that k(u) is such that

fui coe ui.k(g)dg = 0 for all il,...,ij =1,2,...,p and

1 3
j=21,...,M-1 and [f|u, | ... Ju; |k{u)du < = for all
- i1 iM - - T

il""'iM =1,2,...,p. Assume also that all partial derivatives

of order M or less of g(x) exist and are bounded . Then

for any x ¢ [0,1)F,

[Eg, (x) - g(x)1% = 0(a2¥P), (2.11)

REMARK. Under the present setting Lemma 2 holds only for M < 2.
In order for the lemma to hold for M > 2, however, the kernel
function can no longer be a probability density function. It
must be allowed to take both positive and negative values. Then
Conditions (i) and (ii) for k(.) given in Section 1l must be
appropriately modified. This phenomenon is also noted by
Cacoullos (1966) in th. ' "rne estimate of a multivariate density

function.
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. PROOF OF LEMMA 2, Recall that

|Eg_(x) - g(x)]|

A

|zg=lij[g<§j) - g(u)la Pk[(x-u)/a ldu|

’

+ [flgu) - g(§)la;pk[(§-g)/anldg{ =1, + 1,

say (2.12)

We shall show that Iin = O(aﬁp), i=1,2,xc¢ [0,l]p- We

= Mp : = Mp
shall prove that I2n O(an ), and note that I1n O(an ) may

be shown analogously. Now, writing.x” = (xl,...,_xp),

ﬁ‘;_’:‘.;:{ .;‘";‘,,:‘B e ’-.' :‘ - :' ;.4 ; ‘: ' u:;i l:'

PN ‘..=;‘-.-
o \i  AAAAAAL
X

L ]




Y puferofurr Jis sicaiaca M iREN: s NI AERTL SN SO R ,_-1
10
Ion = leslglx-a W - g(x)Ikw)aw], (2.13)
l—xl Xy _ l-x_ x
where C* =[— e 2 ]X e s )([— '——P’ "‘E]. Now, using
an an an a

-4
3
s
?
Cd
5

multidimensional Taylor expansion we see that

9 - 90 = D0 gr 9 Mhwiagm + i o (xeva s,
3 (2.14)
97g(x)
(2) P P gix
where g (xit) = J% o ... 1P _ t, ... t, ,
1 2
L =1,...,M,
Hence
1 M
Ton = Iy k00 g™ (x-0a,w: -a w)au|
Mp
2n . R M
< W fk(w)lD(ll,...,lM;g)(]x—eanwl)"wi [ oo Wy [(-1)7aw,
: - N - 1 M
(2.15)
. . 3Mg(§) :
where D(ll,...,lM;g)(f) i T y— T and
11 iy

Jx —eanyl = (le-eanwll,...,lxp—eanwpl) . But

]D(il,...,iM;g)(f)l < M for all x; it follows that

Mp

I, < C*a P, (2.16)

2n

Thus the lemma follows. ||

THEOREM 5. Assume that the conditions of Lemma 2 are satisfied.

Then for all x ¢ [0,1}P and a = 0(n"1/(2M+1)p)

Elg,(x) - g(x)12 = o(f2W/(2M+1)) (2.17)

LU I G Y Ny
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PROOF. Note that E[g, (x) - g(f)]zli Vargn(§)+[Egn(§)‘g(§)]2o

(52M/2(M+l)). Thus we

Now from Lemma 2, IEgn(g) - g(g_c)]2 =0
need to evaluate Vargn(f)

-ZPZ

Varg, (x) = o {IRjk[(§-g)/an]dg}2

j=1

2, -2p
(o max A(R.)S k[ (x-u)/a,ldu
migs 30,117 s

-1 -1 HZM/(2M+1)),

(2.18)

) = 0(

-pP p
< C*an n 0((nan)

by choosing a = O(n-l/(2M+1)P)-I|

As for the asymptotic normality of gn(x) we proceed as

follows: Choose the regions Rl""’ Rn so that A(R.) = c./n,

j=1,...,n where cl,...,c are positive constants with ZJ =1€ j = n
and that sup Ha = v]| = O(n_l/p). Write c_._ = min{c.} and
u,vst ~ ~ min J
-— - 3 )
Crax = max{cj}. Assume that v, = Elell < =, Then, for large n,
(naf) /218 Bla Py -BY ) sy Kl (x-u)/a; ]|’

J

-p, 3/2 3 3
(nanp) / Z?=1E|Yj—EYjI {ijk[(f—g)/an]d?}

“3(“a;p)3/2z?=1{fajk[ f'?>/an]d9}3

i

Cv (na-p)3/2 /n) f k{(x-u)/a_]du
3 n (o, 1]p - - ) o

-1/2
’

A

P
C'v3(nan)

provided that k(.) is bounded. Similarly, for n sufficiently

large, and k(.) is of Lipschitz of order B8,
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n 2 . _ 2
j=1E(Yj-—EYj) {fR_k[(§ g)/an]dg}

p = -p
na Varg (x) = na ¥ ;

2, _~Pyyn _ 2
o (na_ )zj=l{IRjk[(¥ u) /a_ ]du}

°2(“a;p)Z?=1A(Rj)k[(f-fj)/an]IRjk[(f"?)/‘n]df

2en - 2 '
~ g Zj=lcjanprjk [(35"‘3)/an]d9

2 2 '
o cminIRPk (u) du. (2.19)

|v

In fact, when A(Rj) = 1/n for all j, (naﬁ)Vargn(x) + aszz(g)dg.
Hence applying Liapounov's central limit theorem (Loeve (1963),

p.277), we see that

(naB) 2 g, () - Ba, (01706 I 5a Pr K Lx-y) 2 1wy

-3 converges to N(0,l) in distribution as n tends to infinity and

that from Lemma 2 with M = 2

172y (2.20)

. p,1/2 - = 5p
. (na;) [Egn(f) g(x)] 0((nan )
Hence we arrive at the following theorem.

K . THEOREM 6. Assume that E|e1|3 < =, g(x) has bounded second partial

derivatives. If k is Lip(8), fu;k(u)du = 0,and fluiujlk(u)du < =,

for all i,j =1,...,p, if na§+ © and if naip + 0 as n » =, then

(mab) 2 1g, () - g(x)1/16%12, e V2112 B

ng J j > N(O,l), as n -+ @,

3 where

: 2 - 2
: vy = anprjk [(x-u)/a_]du. (2.21)

. . - - - . ‘e .-: .-. . *
. LA PR N Y AP . .‘ - . - e . ot ot e e . I. - >
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Note that when p = 1, the estimate gn(§) is a
competitor to that of Priestley and Chao (1972). The properties
of our estimator held under much weaker conditions than those
of Priestley and Chao (1972) and Benedetti (1977). To make
this remark more precise let us define a multidimensional
extension of the Priestley and Chao estimate and discuss

briefly its properties. Let
~ R~ _
g (x) =a_ Zj=lvjA(Rj)k[(§ xy)/a,1. (2. 22)

Note that if p = 1 and we select Rj = [xj-l' xj], j=l,...,n

where 0 = X < X, € .. <xn =1, (2.22) reduces to the

h
estimate proposed by Priestley and Chao (1972). They prove that if
g(x) and k(u) are both Lipschitz of orders a and B8

respectively, if maxA(R.) = O(n-l), and if a = n’Y,
' 1<j<n

0 < Yy < min(a, I%E), then gn(x) 2, g(x) for all x ¢ (0,1},
provided that g(x) is continuous on [0,1]). A better result

can'be obtained for g"n(x), p > 1 as follows: Consider

E(g, (x) - § (x))?

_ 2
Bl I a1 ¥y g KL Xy ) /20) = KlGx-w /2 )la)

2¢cn -p - _ _ 2
0" 15=1fay, ij[k[(zf %) /a1 - kl(x-u)/a 1]du}

{2159 (x5) g, IRllxmx;) /ay) - k(x-u)/a,]11du)®

(2.23)
It is not difficult to see that if k(u) is Lipschitz of order
B, then the first term is of order O(n-(28+1)a;(28+2)p)
and the second term is of order 0(n~28a~(28+2)P) provided

n

that max A(R,) = 0(n~Y). Thus if na(M*/BIP | o .g
1<j<n n

PR SE UN Ta PR YRR N PSP LGP Sl S




n + », we conclude, in view of Theorem 2, that: If the conditions

of Theorem 1 hold, if k(g) is Lipschitz of order B and if
naélﬂ/ﬁ)p_,“ then §n(§) RN g(x) as n + = for all
x e [0,1]P,

Note that while the above result improves that of Priestley and
Chao (1972) it is still weaker than that of Theorem 2, but the
calculation of §n(§) is easier than the calculation of gn(f),
since the latter requires evaluation of fR_k[(f-ul/an]dg which
may not be easy for some kernels such as aJ multivariate
normal. We shall show in Section 4, however, that the optimum
choice of k(g), is a p.d.f. such that the evaluation of

fp kl(x-u)/a ldu is not difficult whenever Rj is properly devised.
j -~ ~ -~
On the other hand, note that it follows from the above-discuss-

-2B+1a-(28+1)p).

Hence,
n

.ion that  (naP)E(g (x)-3_(x)? = o(n

(28+1) p/ (28-1)
n

if na + @ as n + o, if the conditions of

Theorem 6 are satisfied, and if k(u) is Lipschitz of order
1/2,. _ 2n 2.1/2 D

as n + «; compare this result with Theorem 2 of Benedetti (1977).

: P
B, then (ngn)

We close this section by noticing that the estimate g, (x)

gives rise to a different estimate of 02, namely we can define

~2 1l ¢n o~ 2
g r-‘-zj=1(Yj-gn(§i)) . (2.24)

~

In Section 3, we shall demonstrate that ci is also consistent

but it requires stronger conditions than those needed for the

2
nl

consistency of o




AR S

Pl i AR L

vy 9

aTa A K

. numbers. Thus we need to show n~

-----
........

15

3. CONSISTENCY OF Oﬁ.

In this section we show that ai is weakly consistent.
To this end note that we can write

2 _yn - 2 n _ 2
nop = I5ay (¥yma(x )% + [o (g, (x50 -g(x5))

n
+ 22j=1(Yj-9(§j))(gn(§j) - g(fj)) = I, + I, +I,, say.
(3.1)

Note that n 't P,02 as n+w by the weak law of large

1n :
r, E>0,1=2,3, as
n + «, A stronger conclusion would be to show that

-1
n EIin + 0, i=2,3, as n + =, But

-1 _ =1l;,¢n n _ 2
nEI, =n {Zj=1Var(gn(§j)) + Zj=1[Eq#§j) 9(§j)] }. (3.2)
In view of (2.19), naﬁVargn(§) = 022?=1ch§ = 9(1), as n + =,

Hence the first term of (3.2) is readily seen to be of order
0((na§)-1) = o(l) if nag + o as n + o, Next, if the
conditions of Lemma 2 hold with M = 2, then the second term

of (3.2) is of order O(aip) = o(l). As for n-lEI3n, we have

-1 “l,on _1/2,, _ 2.1/2
n EI,_ < 2n,,{zj=1E (Y4-g (x5))°E

3n (9, (%5) =g (x5) P}

< 02230/ o1y, (3.3)

under the same conditions used in the proof of (3.2). Hence we

arrive at

THEOREM 7. Assume that the conditions of Lemma 2 are satisfied

with M = 2, Then
02 2> 0% as n e (3.4)
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Note that we can derive an analogous result for Ei under
a bit stronger conditions, viz., write

-1 - -1 - 2
=n Y.:l(Yj~gn(§j))2 =02 +n zg=1(gn(§j)_gn(§j))

~l¢n -
+ 2n 2j=l(Yj-gn(§j))(gn(gj)-gn(fj)) .

> 02 and E(gn(x)-én(x)-)2 —> 0 if k(u) is Lipschitz

na(l+l/6)p
n

second and the third terms of the above expression of &

of order B and + =, Thus we can easily see that the

2 have
‘ _ n
expected values converging to 0, as n + =,
It is possible also to obtain the second mean convergence

of oﬁ (and thus of 65) under the extra assumption that

naip+ ® as n + o and Eei < », To see this, we

2

need to show that Varon + 0 as n + o, Now,

2, _ _=2,¢n _ 2 -
Var(o;) = n""{];_ Varl(¥=g, (x,))7] + [, 4aCovi(¥5-g, (x5)),

(Yj*'gn(fj*))]} = n'2{J1n+J2n}. say. (3.5)

But

2 2 2
Var[(Yj-gn(gj)) 1 Var(Yj) + Var(gn(§ )) + 4Var(ngn(§j))

3

2 2
+ 2C0v(Yj,gn(§j))
- 4COV(Y?,Y g_(x.)) - 4Cov(Y.qg_(x,) 92(x )).
3773°n’S3 307237 Pnt<)
(3.6)

Whenever max A(Rj) - O(n-l) and nazp + ® ag n + o,
1<j<n n

it is not difficult to obtain that

TRy SRy W W YA PR ) PG R D W) Py NPy
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Var(g;(x,)) = 0(n"%a7®P), var(vg (x,)) = 0(n7la ?P),

2 2 _ -1 _-2p 2 - ~1_-p
Cov(yj,gn(§j))—0(n a ),cOv(Yj,ngn(fj)) = 0(n a ), and
3/2a—3p).

n

Cov(g)(x;), ¥4, (%)) = 0(n

Hence it follows that n-22?=lVar[(Yj—gn(§j))2] + 0 as

n + », Similar but perhaps more tedious algegra also reveals
-2

that n Zj#j*c°V((Yj—gn(§j))'(Yj*_gn(fj*))) +0 as n -+ ol

provided that naﬁp + o,

Finally note that one can combine Theorems 6 and 7 to
conclude that an asymptotically normal confidence interval for
g(x) can be.constructed with the limits
) n 2,1/2

c.V.]

2
In (¥ £ 245000 152105Y5

where z, denote the upper 1.00a% point of the standard normal

distribution and v§ is given in (2.21).

4. OPTIMAL CHOICE OF THE KERNEL.

We now proceed to find the kernel k(u) which minimizes
the mean square error E(gn(f)-g(f))z. Note that since the present
regression estimation problem resembles the density estimation
problem, it is not surprising that the optimal choice of the kernel
function for our problem turns out to be exactly the same as that
derived for the density estimation problem. For the latter case
when k(g) = n§=lk(ui) where k{(.) is a bounded univariate p.d.f.
such that |u]k(u) + 0 as |u| + =, see Epanechnikov (1969). Assume
for the remaining of the study that A(Rj) =1/n, j =1,...,n. Let

k (t) denote the characteristic function of k(u), i.e.,

k(t) = rel® % (u)au. (4.1)
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Then we can-write !

Eg, (x) - g(x) = (2m) p{Zn_lg(x ) /g LSex iw' (x-u)y a W) dwldu}

R;
- (2n)‘Pfe1Y §¢ (w) aw, (4.2)
where ¢g(g) = [0 1]p® ~-.g(x)dx.
Thus
Eg (x) - g(x) = (2m) P{rel¥ X (R(a_w) " 5=19(%5) g @ ~1W gu- =4 (W) ] dw)
Ry
= (2m Prret? Tk (aw) (15 9 (x) £ 7MY Rause (w)law
3
+ ret¥’ x¢ (w) [K(a w) - llaw. (4.3)

Now, if g is bounded and continuous, then by the dominated

convergence theorem,

In glxs) S el Edu -+ ¢ (W) as n + . (4.4)
3=17"=37"Ry4
Thus the first term in the right-hand-side (rhs) of (4.3) converges
to 0 as n+», Next, if there exist positive rl,...,rp such that

ll-k(u)]/nluil "1 + k. ., a non zero constant, as

i_l 1,...,rp
[lu]] + 0, then Tyse-.sx, are called the characteristic
exponents of k and kr r the characteristic coefficient.
1'-.-' p
Thus
- r
n T 2m Pre T %y (w) [k(agw) - 114w
i(a W) -1 P r
= (2m Prel'%y () ——P= AN 1yaw
I |a wil i=1
i=1
f.w'x i
* krl,...,rpfe =~ gl lwgl Tegwraw

-----------
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P(x), say. (4.5)

Now, since Varg (x) ::oz(nag)_sz(u)du for n sufficiently

large we obtain that 2
2()r,) b SRS o
1%k hi p(g)lz,

Elg, (x)-g(x)? » o® nal) "7k (wiay + & Tyreeer,

(4.6)
where Xri = X€=lri° Thus the rhs of (4.6) is minimized by

choosing a, as follows:

ryreee,X
| P(x) | 231/ (PH2IE;),

a_ = {(po’/m) SX%(w)du/2(Ir,) [k
P

r . 0 r
ll ’

(4.7)

and the minimum value is

2¥r./(p+)r;) 2)r./(p+lx;)
(p + 22§=lri){02fk2(5)dg} ! 1 ) i 1 L 1

[(2]r;)n]

2/ (pH]ry)

r ,...,r
1 P(x) | , (4.8)

x |k
I rl’o.a,rph

-2Zri/(p+zri)
which tends to 0 at the rate n . Now suppose that

- P
among the special class of kernels k(u) = I k(ui), with
- i=1
k(*) a known bounded p.d.f., with ri =2,i=1,...,p we want

to find the one that minimizes (4.8). This problem is precisely

that of Epanechnikov (1969) whose solution is found to be

ko(u) =(3/4X1-u®), |u| <1, =0, elsewhere.
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